extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(C3xS3) = C3wrS3 | φ: C3xS3/C3 → S3 ⊆ Aut C32 | 9 | 3 | C3^2.1(C3xS3) | 162,10 |
C32.2(C3xS3) = He3.C6 | φ: C3xS3/C3 → S3 ⊆ Aut C32 | 27 | 3 | C3^2.2(C3xS3) | 162,12 |
C32.3(C3xS3) = He3.2C6 | φ: C3xS3/C3 → S3 ⊆ Aut C32 | 27 | 3 | C3^2.3(C3xS3) | 162,14 |
C32.4(C3xS3) = C3xC9:C6 | φ: C3xS3/C3 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.4(C3xS3) | 162,36 |
C32.5(C3xS3) = He3.4C6 | φ: C3xS3/C3 → S3 ⊆ Aut C32 | 27 | 3 | C3^2.5(C3xS3) | 162,44 |
C32.6(C3xS3) = C33:C6 | φ: C3xS3/C3 → C6 ⊆ Aut C32 | 9 | 6+ | C3^2.6(C3xS3) | 162,11 |
C32.7(C3xS3) = He3.S3 | φ: C3xS3/C3 → C6 ⊆ Aut C32 | 27 | 6+ | C3^2.7(C3xS3) | 162,13 |
C32.8(C3xS3) = He3.2S3 | φ: C3xS3/C3 → C6 ⊆ Aut C32 | 27 | 6+ | C3^2.8(C3xS3) | 162,15 |
C32.9(C3xS3) = He3.4S3 | φ: C3xS3/C3 → C6 ⊆ Aut C32 | 27 | 6+ | C3^2.9(C3xS3) | 162,43 |
C32.10(C3xS3) = S3x3- 1+2 | φ: C3xS3/S3 → C3 ⊆ Aut C32 | 18 | 6 | C3^2.10(C3xS3) | 162,37 |
C32.11(C3xS3) = C9xD9 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 18 | 2 | C3^2.11(C3xS3) | 162,3 |
C32.12(C3xS3) = C32:C18 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.12(C3xS3) | 162,4 |
C32.13(C3xS3) = C32:D9 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 27 | | C3^2.13(C3xS3) | 162,5 |
C32.14(C3xS3) = C9:C18 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 18 | 6 | C3^2.14(C3xS3) | 162,6 |
C32.15(C3xS3) = C32xD9 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 54 | | C3^2.15(C3xS3) | 162,32 |
C32.16(C3xS3) = C3xC9:S3 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 54 | | C3^2.16(C3xS3) | 162,38 |
C32.17(C3xS3) = C9xC3:S3 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 54 | | C3^2.17(C3xS3) | 162,39 |
C32.18(C3xS3) = C33.S3 | φ: C3xS3/C32 → C2 ⊆ Aut C32 | 27 | | C3^2.18(C3xS3) | 162,42 |
C32.19(C3xS3) = S3xC3xC9 | central extension (φ=1) | 54 | | C3^2.19(C3xS3) | 162,33 |